TEXTAL: A Pattern Recognition System for Interpreting Electron Density Maps

نویسندگان

  • Thomas R. Ioerger
  • Thomas Holton
  • Jon A. Christopher
  • James C. Sacchettini
چکیده

X-ray crystallography is the most widely used method for determining the three-dimensional structures of proteins and other macromolecules. One of the most difficult steps in crystallography is interpreting the electron density map to build the final model. This is often done manually by crystallographers and is very time-consuming and error-prone. In this paper, we introduce a new automated system called TEXTAL for interpreting electron density maps using pattern recognition. Given a map to be modeled, TEXTAL divides the map into small regions and then finds regions with a similar pattern of density in a database of maps for proteins whose structures have already been solved. When a match is found, the coordinates of atoms in the region are inferred by analogy. The key to making the database lookup efficient is to extract numeric features that represent the patterns in each region and to compare feature values using a weighted Euclidean distance metric. It is crucial that the features be rotation-invariant, since regions with similar patterns of density can be oriented in any arbitrary way. This pattern-recognition approach can take advantage of data accumulated in large crystallographic databases to effectively learn the association between electron density and molecular structure by example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining protein structure from electron-density maps using pattern matching.

TEXTAL is an automated system for building protein structures from electron-density maps. It uses pattern recognition to select regions in a database of previously determined structures that are similar to regions in a map of unknown structure. Rotation-invariant numerical values, called features, of the electron density are extracted from spherical regions in an unknown map and compared with f...

متن کامل

TEXTAL: Crystallographic Protein Model Building Using AI and Pattern Recognition

interprets electron density maps to determine the atomic structures of proteins through X-ray crystallography. Electron density maps are traditionally interpreted by visually fitting atoms into density patterns. This manual process can be time-consuming and error prone, even for expert crystallographers. Noise in the data and limited resolution make map interpretation challenging. To automate t...

متن کامل

Determining Relevant Features to Recognize Electron Density Patterns in X-ray Protein Crystallography

High-throughput computational methods in X-ray protein crystallography are indispensable to meet the goals of structural genomics. In particular, automated interpretation of electron density maps, especially those at mediocre resolution, can significantly speed up the protein structure determination process. TEXTAL(TM) is a software application that uses pattern recognition, case-based reasonin...

متن کامل

Crystallographic protein model-building on the web

UNLABELLED X-ray crystallography is the most widely used method to determine the 3D structure of protein molecules. One of the most difficult steps in protein crystallography is model-building, which consists of constructing a backbone and then amino acid side chains into an electron density map. Interpretation of electron density maps represents a major bottleneck in protein structure determin...

متن کامل

Creating protein models from electron-density maps using particle-filtering methods

MOTIVATION One bottleneck in high-throughput protein crystallography is interpreting an electron-density map, that is, fitting a molecular model to the 3D picture crystallography produces. Previously, we developed ACMI (Automatic Crystallographic Map Interpreter), an algorithm that uses a probabilistic model to infer an accurate protein backbone layout. Here, we use a sampling method known as p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. International Conference on Intelligent Systems for Molecular Biology

دوره   شماره 

صفحات  -

تاریخ انتشار 1999